
-1-

Group Analysis with AFNI - Hands On

• The following sample group analysis comes from “How-to #5 -- Group
Analysis: AFNI 3dANOVA3”, described in full detail on the AFNI website:
http://afni.nimh.gov/pub/dist/HOWTO/howto/ht05_group/html

• Brief description of experiment :
✧ Design:

➥ Rapid event-related
✧ “Stimulus Condition” has 4 levels:

➥ TM = Tool Movies
➥ HM = Human Movies
➥ TP = Tool Point Light Displays
➥ HP = Human Point Light Displays

Human MovieTool Movie Human Point LightTool Point Light

-2-

✧ Data Collected:
➥ 1 Anatomical (SPGR) dataset for each subject

➭ 124 sagittal slices
➥ 10 Time Series (EPI) datasets for each subject

➭ 23 axial slices x 138 volumes = 3174 volumes/timepoints per run
• note: each run consists of random presentations of rest and all 4

stimulus condition levels
➭ TR = 2 sec; voxel dimensions = 3.75 x 3.75 x 5 mm

➥ Sample size, n=7 (subjects ED, EE, EF, FH, FK, FL, FN)

• Analysis Steps:
✧ Part I: Process data for each subject first

➥ Pre-process subjects’ data ⇒ many steps involved here…
➥ Run deconvolution analysis on each subject’s dataset --- 3dDeconvolve

✧ Part II: Run group analysis
➥ 3-way Analysis of Variance (ANOVA) --- 3dANOVA3
➥ i.e., Object Type (2) x Animation Type (2) x Subjects (7) = 3-way ANOVA

-3-

• PART I ⇒ Process Data for each Subject First:
✧ Hands-on example: Subject ED
✧ We will begin with ED’s anat dataset and 10 time-series (3D+time) datasets:
EDspgr+orig, EDspgr+tlrc, ED_r01+orig, ED_r02+orig … ED_r10+orig

➥ Below is ED’s ED_r01+orig (3D+time) dataset. Notice the first two time
points of the time series have relatively high intensities*. We will need to
remove them later:

Timepoints 0
and 1 have high
intensity values

✶ Images obtained during the first 4-6 seconds of scanning will have much larger
intensities than images in the rest of the timeseries, when magnetization (and therefore
intensity) has decreased to its steady state value

-4-

• STEP 1: Check for possible “outliers” in each of the 10 time series
 datasets. The AFNI program to use is 3dToutcount (also run by
 default in to3d)

✧ An outlier is usually seen as an isolated spike in the data, which may be due to a
number of factors, such as subject head motion or scanner irregularities.

✧ In any case, the outlier is not a true signal that results from presentation of a stimulus
event, but rather, an artifact from something else -- it is noise.

foreach run (01 02 03 04 05 06 07 08 09 10)
3dToutcount -automask ED_r{$run}+orig \

 > toutcount_r{$run}.1D
end

✧ How does this program work? For each time series, the trend and Mean Absolute
Deviation are calculated. Points far away from the trend are considered outliers.
“Far away” is mathematically defined.

➭ See 3dToutcount -help for specifics.
➥ -automask: Does the outlier check only on voxels within the brain and ignores

background voxels (which are detected by the program because of their smaller
intensity values).

➥ > : This is the “redirect” symbol in UNIX. Instead of displaying the results onto
the screen, they are saved into a text file. In this example, the text files are called
toutcount_r{$run}.1D.

-5-

✧ Subject ED’s outlier files:
toutcount_r01.1D
toutcount_r02.1D
 …

 toutcount_r10.1D

✧ Use AFNI 1dplot to display any one of ED’s outlier files. For example:
1dplot toutcount_r04.1D

Note: “1D” is used to identify a text file.
In this case, each file consists a column
of 138 numbers (b/c of 138 time points).

High intensity values
in the beginning are
usually due to
scanner attempting
to reach steady
state.

Outliers? If head motion,
this should be cleared up
with 3dvolreg. If due to

something weird with the
scanner, 3dDespike might
work (but use sparingly).

time

Num. of
‘outlier’
voxels

-6-

• STEP 2: Shift voxel time series so that separate slices are aligned to the
 same temporal origin using 3dTshift

✧ The temporal alignment is done so it seems that all slices were acquired at
the same time, i.e., the beginning of each TR.

✧ The output dataset time series will be interpolated from the input to a new
temporal grid. There are several interpolation methods to choose from,
including ‘Fourier’, ‘linear’, ‘cubic’, ‘quintic’, and ‘heptic’.

foreach run (01 02 03 04 05 06 07 08 09 10)
3dTshift -tzero 0 -heptic \

 -prefix ED_r{$run}_ts \
 ED_r{$run}+orig

end

➥ -tzero: Tells the program which slice’s time offset to align to. In this
example, the slices are all aligned to the time offset of the first (0) slice.

➥ -heptic: Use the 7th order Lagrange polynomial interpolation. Why
7th order? Bob Cox likes this (and that’s good enough for me).

-7-

✧ Subject ED’s newly created time shifted datasets:
ED_r01_ts+orig.HEAD ED_r01_ts+orig.BRIK
 … …
ED_r10_ts+orig.HEAD ED_r10_ts+orig.BRIK

✧ Below is run 01 of ED’s time shifted dataset, ED_r01_ts+orig:

Slice acquisition now
in synchrony with
beginning of TR

-8-

• STEP 3: Volume Register the voxel time series for each 3D+time dataset
 using AFNI program 3dvolreg

✧ We will also remove the first 2 time points at this step

foreach run (01 02 03 04 05 06 07 08 09 10)
3dvolreg -verbose

 -base ED_r01_ts+orig’[2]’ \
 -prefix ED_r{$run}_vr \
 -1Dfile dfile.r{$run}.1D \
 ED_r{$run}_ts+orig’[2..137]’

end

➥ -verbose: Prints out progress report onto screen
➥ -base: Timepoint 2 is our base/target volume to which the remaining timepoints

(3-137) will be aligned. We are ignoring timepoints 0 and 1
➥ -prefix gives our output files a new name, e.g., ED_r01_vr+orig
➥ -1Dfile: Save motion parameters for each run (roll, pitch, yaw, dS, dL, dP)

into a file containing 6 ASCII formatted columns.
➥ ED_r{$run}_ts+orig’[2..137]’ refers to our input datasets (runs 01-10)

that will be volume registered. Notice that we are removing timepoints 0 and 1

-9-

✧ Subject ED’s newly created volume registered datasets:
ED_r01_vr+orig.HEAD ED_r01_vr+orig.BRIK
 … …
ED_r10_vr+orig.HEAD ED_r10_vr+orig.BRIK

✧ Below is run 01 of ED’s volume registered datasets, ED_r01_vr+orig:

-10-

• STEP 4: Smooth 3D+time datasets with AFNI 3dmerge

✧ The result of spatial blurring (filtering) is somewhat cleaner, more contiguous
activation blobs

✧ Spatial blurring will be done on ED’s time shifted, volume registered
datasets:

foreach run (01 02 03 04 05 06 07 08 09 10)
3dmerge -1blur_fwhm 4 \

-doall \
-prefix ED_r{$run}_vr_bl \
ED_r{$run}_vr+orig

end

➥ -1blur_fwhm 4 sets the Gaussian filter to have a full width half max of
4mm (You decide the type of filter and the width of the selected filter)

➥ -doall applies the editing option (in this case the Gaussian filter) to all
sub-bricks uniformly in each dataset

-11-

Before blurring After blurring

✧ Result from 3dmerge:

ED_r01_vr+orig ED_r01_vr_bl+orig

-12-

• STEP 5: Scaling the Data - i.e., Calculating Percent Change

✧ This particular step is a bit more involved, because it is comprised of three
parts. Each part will be described in detail:

A. Create a mask so that all background values (outside of the volume) are set to
zero with 3dAutomask

B. Do a voxel-by-voxel calculation of the mean intensity value with 3dTstat
C. Do a voxel-by-voxel calculation of the percent signal change with 3dcalc

✧ Why should we scale our data?
➥ Scaling becomes an important issue when comparing data across subjects,

because baseline/rest states will vary from subject to subject
➥ The amount of activation in response to a stimulus event will also vary from

subject to subject
➥ As a result, the baseline Impulse Response Function (IRF) and the stimulus

IRF will vary from subject to subject -- we must account for this variability
➥ By converting to percent change, we can compare the activation calibrated

with the relative change of signal, instead of the arbitrary baseline of FMRI
signal

-13-

✧ For example:
Subject 1 - Signal in hippocampus goes from 1000 (baseline) to 1050

 (stimulus condition)
Difference = 50 IRF units

Subject 2 - Signal in hippocampus goes from 500 (baseline) to 525
 (stimulus condition)

Difference = 25 IRF units

✧ Conclusion:
➥ Subject 1 shows twice as much activation in response to the stimulus

condition than does Subject 2 --- WRONG!!

➥ If ANOVA were run on these difference scores, the change in baseline
from subject to subject would add variance to the analysis

➥ We must control for these differences in baseline across subjects by
somehow normalizing the baseline so that a reliable comparison
between subjects can be made

-14-

✧ Solution:
➥ Compute Percent Signal Change

➭ i.e., by what percent does the Impulse Response Function
increase with presentation of the stimulus condition, relative to
baseline?

➥ Percent Change Calculation:
➭ If A = Stimulus IRF
➭ If B = Baseline IRF

Percent Signal Change = (A/B) * 100%

-15-

✧ Subject 1 --Stimulus (A) = 1050, Baseline (B) = 1000

(1050/1000) * 100% = 105% or 5% increase in IRF

✧ Subject 2 -- Stimulus (A) = 525, Baseline (B) = 500

(525/500) * 100% = 105% or 5% increase in IRF

➥ Conclusion:
➭ Both subjects show a 5% increase in signal change from

baseline to stimulus condition
➭ Therefore, no significant difference in signal change between

these two subjects

-16-

• STEP 5A: Ignore any background values in a dataset by creating a
 mask with 3dAutomask

✧ Values in the background have very low baseline values, which can lead to
artificially large percent signal change values. Let’s remove them altogether
by creating a mask of our dataset, where values inside the brain are
assigned a value of “1” and values outside of the brain (e.g., noise) are
assigned a value of “0”

✧ This mask will be used later when the percent signal change in each voxel is
calculated. A percent change will be computed only for voxels inside the
mask

✧ A mask will be created for each of Subject ED’s time shifted/volume
registered/blurred 3D+time datasets:

foreach run (01 02 03 04 05 06 07 08 09 10)
3dAutomask -dilate 1 -prefix mask_r{$run} \

 ED_r{$run}_vr_bl+orig
end

➥ Output of 3dAutomask: A mask dataset for each 3D+time dataset:
 mask_r01+orig, mask_r02+orig … mask_r10+orig

-17-

✧ Now let’s take those 10 masks (we don’t need 10 separate masks) and
combine them to make one master or “full mask”, which will be used to
calculate the percent signal change only for values inside the mask (i.e., inside
the brain).

✧ 3dcalc -- one of the most versatile AFNI programs -- is used to combine the
10 masks into one:

3dcalc -a mask_r01+orig -b mask_r02+orig -c mask_r03+orig \
 -d mask_r04+orig -e mask_r05+orig -f mask_r06+orig \
 -g mask_r07+orig -h mask_r08+orig -i mask_r09+orig \
 -j mask_r10+orig \
 -expr ‘or(a+b+c+d+e+f+g+h+i+j)’ \
 -prefix full_mask

Output: full_mask+orig:

➥ -expr ‘or’: Used to determine whether
voxels along the edges make it to the full mask or
not. If an edge voxel has a “1” value in any of the
individual masks, the ‘or’ keeps that voxel as part
of the full mask.

-18-

• STEP 5B: Create a voxel-by-voxel mean for each timeseries dataset with
 3dTstat

✧ For each voxel, add the intensity values of the 136 time points and divide by
136

✧ The resulting mean will be inserted into the “B” slot of our percent signal
change equation (A/B*100%)

foreach run (01 02 03 04 05 06 07 08 09 10)
3dTstat -prefix mean_r{$run} \
ED_r{$run}_vr_bl+orig

end

➥ Unless otherwise specified, the default statistic for 3dTstat is to compute
a voxel-by-voxel mean
➭ Other statistics run by 3dTstat include a voxel-by-voxel standard

deviation, slope, median, etc…

-19-

✧ The end result will be a dataset consisting of a single mean value in each
voxel. Below is a graph of a 3x3 voxel matrix from subject ED’s dataset
mean_r01+orig:

ED_r01_vr_bl+orig

mean_r01+orig

Timept 0: 1530
+ TP 1: 1515
+ TP 2: 1498
+ TP …
+ TP 135: 1522
Divide sum by 136

 Mean = 1523.346

-20-

• STEP 5C: Calculate a voxel-by-voxel percent signal change with
 3dcalc

✧ Take the 136 intensity values within each voxel, divide each one by the
mean intensity value for that voxel (that we calculated in Step 3B), and
multiply by 100 to get a percent signal change at each timepoint

✧ This is where the A/B*100 equation comes into play

foreach run (01 02 03 04 05 06 07 08 09 10)
3dcalc -a ED_r{$run}_vr_bl+orig \

-b mean_r{$run}+orig \
-c full_mask+orig \
-expr “(a/b * 100) * c” \
-prefix scaled_r{$run}

end

➥ Output of 3dcalc: 10 scaled datasets for Subject ED, where the signal
intensity value at each timepoint has now been replaced with a percent
signal change value
scaled_r01+orig, scaled_r02+orig … scaled_r10+orig

-21-

✧ E.g., Timepoint #18 above shows a percent signal change value of 101.7501
✧ i.e., relative to the baseline (of 100), the stimulus presentation (and noise too)

resulted in a percent signal change of 1.7501% at that specific timepoint

Timepoint #18

Shows index coordinates
for highlighted voxel

Displays the
timepoint highlighted
in center voxel and its
percent signal change
value

scaled_r01+orig

-22-

• STEP 6: Concatenate ED’s 10 scaled datasets into one big dataset
 with 3dTcat

3dTcat -prefix ED_all_runs \
scaled_r??+orig

➥ The ?? Takes the place of having to type out each individual run, such as
scaled_01+orig, scaled_r02+orig, etc. This is a helpful UNIX
shortcut. You could also use the wildcard *

✧ The output from 3dTcat is one big dataset -- ED_all_runs+orig -- which
consists of 1360 volumes (i.e., 10 runs x 136 timepoints). Every voxel in this
large dataset contains percent signal change values

✧ This output file will be inserted into the 3dDeconvolve program

➥ Do you recall those motion parameter files we created when running
3dvolreg? (No? See page 8 of this handout). We need to concatenate
those files too because they will be inserted into the 3dDeconvolve
command as Regressors of No Interest (RONI’s).
➭ The UNIX program cat will concatenate these ASCII files:

cat dfile.r??.1D > dfile.all.1D

-23-

• STEP 7: Perform a deconvolution analysis on Subject ED’s data with
 3dDeconvolve

✧ What is the difference between regular linear regression and deconvolution
analysis?
➥ With linear regression, the hemodynamic response is already assumed

(we can get a fixed hemodynamic model by running the AFNI waver
program)

➥ With deconvolution analysis, the hemodynamic response is not
assumed. Instead, it is computed by 3dDeconvolve from the data
➭ Once the HRF is modeled by 3dDeconvolve, the program then

runs a linear regression on the data
➭ To compute the hemodynamic response function with
3dDeconvolve, we include the “minlag” and “maxlag” options on
the command line

• The user (you) must determine the lag time of an input stimulus
• 1 lag = 1 TR = 2 seconds

➥ In this example, the lag time of the input stimulus has been determined
to be about 15 lags (decided by the wise and all-knowing experimenter)
➭ As such, we will add a “minlag” of 0 and a “maxlag” of 14 in our
3dDeconvolve command

-24-

• 3dDeconvolve command - Part 1

3dDeconvolve -polort 2
-input ED_all_runs+orig -num_stimts 10 \
-concat ../misc_files/runs.1D \
-stim_file 1 ../misc_files/all_stims.1D’[0]’ \

-stim_label 1 ToolMovie \
-stim_minlag 1 0 -stim_maxlag 1 14 -stim_nptr 1 2 \

-stim_file 2 ../misc_files/all_stims.1D’[1]’ \
-stim_label 2 HumanMovie \
-stim_minlag 2 0 -stim_maxlag 2 14 -stim_nptr 2 2 \

-stim_file 3 ../misc_files/all_stims.1D’[2]’ \
-stim_label 3 ToolPoint \
-stim_minlag 3 0 -stim_maxlag 3 14 -stim_nptr 3 2 \

-stim_file 4 ../misc_files/all_stims.1D’[3]’ \
-stim_label 4 HumanPoint \
-stim_minlag 4 0 -stim_maxlag 4 14 -stim_nptr 4 2 \

Experimenter
estimates the HRF

will last ~15 sec

of stimulus
function pts per
TR. Default = 1.
Here it’s set to 2

Our stim files for
each stim condition

Concatenated 10 runs
for subject ED

Our baseline is quadratic
(default is “linear”)

Continued on
next page…

-25-

• 3dDeconvolve command - Part 2

-stim_file 5 dfile.all.1D’[0]’ -stim_base 5 \
-stim_file 6 dfile.all.1D’[1]’ -stim_base 6 \
-stim_file 7 dfile.all.1D’[2]’ -stim_base 7 \
-stim_file 8 dfile.all.1D’[3]’ -stim_base 8 \
-stim_file 9 dfile.all.1D’[4]’ -stim_base 9 \
-stim_file 10 dfile.all.1D’[5]’ -stim_base 10 \
-gltsym ../misc_files/contrast1.1D -glt_label 1 FullF \
-gltsym ../misc_files/contrast2.1D -glt_label 2 HvsT \
-gltsym ../misc_files/contrast3.1D -glt_label 3 MvsP \
-gltsym ../misc_files/contrast4.1D -glt_label 4 HMvsHP \
-gltsym ../misc_files/contrast5.1D -glt_label 5 TMvsTP \
-gltsym ../misc_files/contrast6.1D -glt_label 6 HPvsTP \
-gltsym ../misc_files/contrast7.1D -glt_label 7 HMvsTM \

General Linear Tests, “Symbolic” usage.
E.g., +[Human Movie] -[Tool Movie]
rather than -glt option, e.g., 30@0 1 -1 0 0

RONI’s
RONI’s are part of the

baseline model

Continued on
next page…

-26-

• 3dDeconvolve command - Part 3

-iresp 1 TMirf
-iresp 2 HMirf
-iresp 3 TPirf
-iresp 4 HPirf
-full_first -fout -tout -nobout
-xpeg Xmat
-bucket ED_func

Writes a JPEG file
graphing the X matrix

Show Full-F first in bucket
dataset, compute F-tests,
compute t-tests, don’t show
output of baseline coefficients
in bucket dataset

Done with
3dDeconvolve
command

irf files show the voxel-by-voxel impulse
response function for each stimulus
condition. Recall that the IRF was modeled
using ‘min’ and ‘max’ lag options (more
explanation on p.27).

-27-

✧ -iresp 1 TMirf
✧ -iresp 2 HMirf
✧ -iresp 3 TPirf
✧ -iresp 4 HPirf

➥ These output files are important because they contain the estimated
Impulse Response Function for each stimulus type

➥ The percent signal change is shown at each time lag
✧ Below is the estimated IRF for Subject ED’s “Human Movies” (HM) condition:

Switch UnderLay: HMirf+orig
Switch OverLay: ED_func+orig

-28-

✧ Focusing on a single voxel (from ED’s HMirf+orig dataset), we can see that
the IRF is made up of 15 time lags (0-14). Recall that this lag duration was
determined in the 3dDeconvolve command

✧ Each time lag consists of a percent signal change value:

-29-

✧ To run an ANOVA, only one data point can exist in each voxel
➥ As such, the percent signal change values in the 15 lags must be averaged
➥ In the voxel displayed below, the mean percent signal change = 1.957%

+

Mean % sig. chg,.
(lags 0-14) = 1.957%

-30-

• STEP 8: Use AFNI 3dbucket to slim down the functional dataset
 bucket, i.e., create a mini-bucket that contains only the sub-
 bricks you’re interested in

✧ There are 152 sub-bricks in ED_func+orig.BRIK. Select the most relevant
ones for further analysis and ignore the rest for now.

3dbucket -prefix ED_func_slim \
 -fbuc ED_func+orig’[0,125..151]’

-31-

• STEP 9: Compute a voxel-by-voxel mean percent signal change
 with AFNI 3dTstat

✧ The following 3dTstat command will compute a voxel-by-voxel mean for
each IRF dataset, of which we have four: TMirf, HMirf, TPirf, HPirf

foreach cond (TM HM TP HP)
3dTstat -prefix ED_{$cond}_irf_mean \

 {$cond}irf+orig
end

-32-

➥ The output from 3dTstat will be four irf_mean datasets, one for
each stimulus type. Below are subject ED’s averaged IRF datasets:

ED_TM_irf_mean+orig ED_HM_irf_mean+orig
ED_TP_irf_mean+orig ED_HP_irf_mean+orig

✧ Each voxel will now contain a single number (i.e., the mean percent
signal change). For example:

ED_HM_irf_mean+orig

-33-

• STEP 10: Resample the mean IRF datasets for each subject to the
 same grid as their Talairached anatomical datasets with adwarp

✧ For statistical comparisons made across subjects, all datasets -- including
functional overlays -- should be standardized (e.g., Talairach format) to control
for variability in brain shape and size

foreach cond (TM HM TP HP)
adwarp -apar EDspgr+tlrc -dxyz 3 \

-dpar ED_{$cond}_irf_mean+orig \
end

✧ The output of adwarp will be four Talairach transformed IRF datasets.
ED_TM_irf_mean+tlrc ED_HM_irf_mean+tlrc
ED_TP_irf_mean+tlrc ED_HP_irf_mean+tlrc

• We are now done with Part 1-- Process Individual Subjects’ Data -- for Subject
ED
✧ Go back and follow the same steps for remaining 6 subjects

• We can now move on to Part 2 -- RUN GROUP ANALYSIS (ANOVA)

-34-

• PART 2 ⇒ Run Group Analysis (ANOVA3):
✧ In our sample experiment, we have 3 factors (or Independent Variables) for our

analysis of variance: “Stimulus Condition” and “Subjects”

➥ IV 1: OBJECT TYPE ⇒ 2 levels
• Tools (T)
• Humans (H)

➥ IV 2: ANIMATION TYPE ⇒ 2 levels
• Movies (M)
• Point-light displays (P)

➥ IV 3: SUBJECTS ⇒ 7 levels (note: this is a small sample size!)
• Subjects ED, EE, EF, FH, FK, FL, FN

✧ The mean IRF datasets from each subject will be needed for the ANOVA. Example:
ED_TM_irf_mean+tlrc EE_TM_irf_mean+tlrc EF_TM_irf_mean+tlrc
ED_HM_irf_mean+tlrc EE_HM_irf_mean+tlrc EF_HM_irf_mean+tlrc
ED_TP_irf_mean+tlrc EE_TP_irf_mean+tlrc EF_TP_irf_mean+tlrc
ED_HP_irf_mean+tlrc EE_HP_irf_mean+tlrc EF_HP_irf_mean+tlrc

-35-

Continued on
next page…

irf datasets,
created for
each subj with
3dDeconvolve
(See p.26)

IV A: Object
IV B: Animation

IV C: Subjects

• 3dANOVA3 Command - Part 1

 3dANOVA3 -type 4 \

-alevels 2 \

-blevels 2 \

-clevels 7 \

-dset 1 1 ED_TM_irf_mean+tlrc \

-dset 2 1 ED_HM_irf_mean+tlrc \

-dset 3 1 ED_TP_irf_mean+tlrc \

-dset 4 1 ED_HP_irf_mean+tlrc \

-dset 1 2 EE_TM_irf_mean+tlrc \

-dset 2 2 EE_HM_irf_mean+tlrc \

-dset 3 2 EE_TP_irf_mean+tlrc \

-dset 4 2 EE_HP_irf_mean+tlrc \

-dset 1 3 EF_TM_irf_mean+tlrc \

-dset 2 3 EF_HM_irf_mean+tlrc \

-dset 3 3 EF_TP_irf_mean+tlrc \

-dset 4 3 EF_HP_irf_mean+tlrc \

IV’s A & B are fixed, C is random.
See 3dANOVA3 -help

-36-

• 3dANOVA3 Command - Part 2

-dset 1 1 FH_TM_irf_mean+tlrc \

-dset 2 1 FH_HM_irf_mean+tlrc \

-dset 3 1 FH_TP_irf_mean+tlrc \

-dset 4 1 FH_HP_irf_mean+tlrc \

-dset 1 2 FK_TM_irf_mean+tlrc \

-dset 2 2 FK_HM_irf_mean+tlrc \

-dset 3 2 FK_TP_irf_mean+tlrc \

-dset 4 2 FK_HP_irf_mean+tlrc \

-dset 1 3 FL_TM_irf_mean+tlrc \

-dset 2 3 FL_HM_irf_mean+tlrc \

-dset 3 3 FL_TP_irf_mean+tlrc \

-dset 4 3 FL_HP_irf_mean+tlrc \

-dset 1 3 FN_TM_irf_mean+tlrc \

-dset 2 3 FN_HM_irf_mean+tlrc \

-dset 3 3 FN_TP_irf_mean+tlrc \

-dset 4 3 FN_HP_irf_mean+tlrc \ Continued on
next page…

more
irf
datasets

-37-

• 3dANOVA3 Command - Part 3

-fa ObjEffect \

-fb AnimEffect \

-adiff 1 2 TvsH \

-bdiff 1 2 MvsP \

-acontr 1 -1 sameas.TvsH \

-bcontr 1 -1 sameas.MvsP \

-aBcontr 1 -1: 1 TMvsHM \

-aBcontr -1 1: 2 HPvsTP \

-Abcontr 1: 1 -1 TMvsTP \

-Abcontr 2: 1 -1 HMvsHP \

-bucket AvgAnova

End of ANOVA
command

Produces main effect for factor ‘a’
(Object type). I.e., which voxels
show increases in % signal change
that is sig. Different from zero?

Main effect for factor
‘b’, (Animation type)

All F-tests, t-tests,
etc will go into this
dataset bucket

These are
contrasts
(t-tests).
Explained on
pp 38-39

-38-

✧ -adiff: Performs contrasts between levels of factor ‘a’ (or -bdiff for factor ‘b’,
-cdiff for factor ‘c’, etc), with no collapsing across levels of factor ‘a’.

E.g.1, Factor “Object Type” --> 2 levels: (1)Tools, (2)Humans:
-adiff 1 2 TvsH

E.g., 2, Factor “Faces” --> 3 levels: (1)Happy, (2)Sad, (3)Neutral
-adiff 1 2 HvsS

-adiff 2 3 SvsN

-adiff 1 3 HvsN

✧ -acontr: Estimates contrasts among levels of factor ‘a’ (or -bcontr for factor
‘b’, -ccontr for factor ‘c’, etc). Allows for collapsing across levels of factor ‘a’
➥ In our example, since we only have 2 levels for both factors ‘a’ and ‘b’, the
-diff and -contr options can be used interchangeably. Their different
usages can only be demonstrated with a factor that has 3 or more levels:

➥ E.g.: factor ‘a’ = FACES --> 3 levels :(1) Happy, (2) Sad, (3) Neutral
-acontr 1 -1 -1 HvsSN

-acontr 1 1 -1 HSvsN

-acontr 1 -1 1 HNvsS

Simple paired t-tests, no
collapsing across levels, like
Happy vs. Sad/Neutral

Happy vs. Sad/Neutral
Happy/Sad vs. Neutral

Happy/Neutral vs. Sad

-39-

✧ -aBcontr: 2nd order contrast. Performs comparison between 2 levels of factor ‘a’
at a Fixed level of factor ‘B’
➥ E.g. factor ‘a’ --> Tools(1) vs. Humans(-1),

 factor ‘B’ --> Movies(1) vs. Points(2)
➭ We want to compare ‘Tools Movies’ vs. ‘Human Movies’. Ignore ‘Points’

-aBcontr 1 -1 : 1 TMvsHM

➭ We want to compare “Tool Points’ vs. ‘Human Points’. Ignore ‘Movies’
-aBcontr 1 -1 : 2 TPvsHP

✧ -Abcontr: 2nd order contrast. Performs comparison between 2 levels of factor ‘b’
at a Fixed level of factor ‘A’
➥ E.g., E.g.factor ‘b’ --> Movies(1) vs. Points(-1),

 factor ‘A’ --> Tools(1) vs. Humans(2)
➭ We want to compare ‘Tools Movies’ vs. ‘Tool Points’. Ignore ‘Humans

-Abcontr 1 : 1 -1 TMvsTP

➭ We want to compare “Human Movies vs. ‘Human Points’. Ignore ‘Tools’
-Abcontr 2 : 1 -1 HMvsHP

-40-

✧ In class -- Let’s run the ANOVA together:

➥ cd AFNI_data2
➭ This directory contains a script called s3.anova.ht05 that will run
3dANOVA3

➭ This script can be viewed with a text editor, like emacs
➥ ./s3.anova.ht05

➭ execute the ANOVA script from the command line
➥ cd group_data ; ls

➭ result from ANOVA script is a bucket dataset AvgANOVA+tlrc,
stored in the group_data/ directory

➥ afni &

➭ launch AFNI to view the results

✧ The output from 3dANOVA3 is bucket dataset AvgANOVA+tlrc, which
contains 20 sub-bricks of data:

➭ i.e., main effect F-tests for factors A and B, 1st order contrasts, and
2nd order contrasts

-41-

➥ -fa: Produces a main effect for factor ‘a’
➭ In this example, -fa determines which voxels show a percent signal

change that is significantly different from zero when any level of factor
“Object Type” is presented

➭ -fa ObjEffect:

Activated areas
respond to OBJECTS
in general (i.e.,
humans and/or tools)

ULay: sample_anat+tlrc
OLay: AvgANOVA+tlrc

-42-

✧ Brain areas corresponding to “Tools” (reds) vs. “Humans” (blues)
➥ -diff 1 2 TvsH (or -acontr 1 -1 TvsH)

Red blobs show
statistically significant
percent signal changes in
response to “Tools.”
Blue blobs show
significant percent signal
changes in response to
“Humans” displays

ULay: sample_anat+tlrc
OLay: AvgANOVA+tlrc

-43-

✧ Brain areas corresponding to “Human Movies” (reds) vs. “Humans Points” (blues)
➥ -Abcontr 2: 1 -1 HMvsHP

Red blobs show
statistically significant
percent signal changes in
response to “Human
Movies.” Blue blobs
show significant percent
signal changes in
response to “Human
Points” displays

ULay: sample_anat+tlrc
OLay: AvgANOVA+tlrc

-44-

• Many thanks to Mike Beauchamp for donating the data used in this lecture
and in the how-to#5

• For a full review of the experiment described in this lecture, see
Beauchamp, M.S., Lee, K.E., Haxby, J.V., & Martin, A.
(2003). FMRI responses to video and point-light
displays of moving humans and manipulable objects.
Journal of Cognitive Neuroscience, 15:7, 991-1001.

• For more information on AFNI ANOVA programs, visit the web page of Gang
Chen, our wise and infinitely patient statistician:

http//afni.nimh.gov/sscc/gangc

